
Respiratory syncytial virus (RSV): a scourge from 
infancy to old age
James Andrew Coultas   ,1 Rosalind Smyth   ,2 Peter J Openshaw1

State of the art review

To cite: Coultas JA, Smyth R, 
Openshaw PJ. Thorax 
2019;74:986–993.

1National Heart and Lung 
Division, Imperial College, 
London, UK
2Director of the Insitute and 
Professor of Child Health, Great 
Ormond Street Institute for 
Child Health, UCL, London, UK

Correspondence to
Prof Rosalind Smyth, Great 
Ormond Street Institute for 
Child Health, UCL, London EH16 
4TJ, UK;  
 rosalind. smyth@ ucl. ac. uk

Received 3 March 2019
Revised 19 May 2019
Accepted 14 June 2019
Published Online First 
5 August 2019

© Author(s) (or their 
employer(s)) 2019. No 
commercial re-use. See rights 
and permissions. Published 
by BMJ.

AbSTrACT
Respiratory syncytial virus (RSV) is the most common 
single cause of respiratory hospitalisation of infants 
and is the second largest cause of lower respiratory 
infection mortality worldwide. In adults, RSV is an under-
recognised cause of deterioration in health, particularly 
in frail elderly persons. Infection rates typically rise in 
late autumn and early winter causing bronchiolitis in 
infants, common colds in adults and insidious respiratory 
illness in the elderly. Virus detection methods optimised 
for use in children have low detection rate in adults, 
highlighting the need for better diagnostic tests. There 
are many vaccines under development, mostly based 
on the surface glycoprotein F which exists in two 
conformations (prefusion and postfusion). Much of the 
neutralising antibody appears to be to the prefusion 
form. Vaccines being developed include live attenuated, 
subunit, particle based and live vectored agents. Different 
vaccine strategies may be appropriate for different target 
populations: at-risk infants, school-age children, adult 
caregivers and the elderly. Antiviral drugs are in clinical 
trial and may find a place in disease management. RSV 
disease is one of the major remaining common tractable 
challenges in infectious diseases and the era of vaccines 
and antivirals for RSV is on the near horizon.

InTroduCTIon
Respiratory syncytial virus (RSV) is the most 
common single cause of respiratory hospitalisa-
tion of infants and is the second biggest cause of 
lower respiratory infection mortality worldwide.1 
In resource-rich countries, RSV causes relatively 
few deaths among otherwise healthy children but 
places a great strain on hospital resources in winter 
seasons. In healthy adults, RSV causes common 
colds reinfecting with apparent ease; in frail elderly 
persons, it causes insidious deteriorations of respi-
ratory health with high mortality, much of which 
may be undiagnosed. Despite intensive research 
since the 1960s, vaccines and specific therapies 
remain unavailable. Furthermore, using burden-ad-
justed research intensity, RSV research is under-
funded and has seen a decline in spending during 
a period when influenza research has been progres-
sively better funded.2 In this review, we examine 
the epidemiology, immunology and contemporary 
research landscape of RSV disease in both children 
and in adults.

EpIdEmIology
In the developed world, RSV is the single largest 
cause of hospitalisation in under-5s, with 33 500 
admissions in the UK, and most children infected 
by 2 years of age.3 4 Outbreaks of RSV disease occur 

each winter in temperate regions, normally begin-
ning in autumn and early winter in Europe and 
North America.3 5 National data from the UK shows 
that infections typically start to appear around 
week 40 (September) and peak between week 46 
and 52 (November–early December).6 In summer, 
there are few cases; for example, in week 18, the 
number of reported cases in England is typically 
approaching zero. This seasonality is mirrored in 
the USA where the median week of onset ranged 
from week 46 to week 3 (November–January).6 7 
There has been a rise in the proportion of infants 
admitted to hospital with RSV from around 2% in 
1998 to 5% today.4 This may be due to more infants 
surviving at early gestational ages and/or a lower 
threshold for admission of infants with respiratory 
distress.

In affluent countries, deaths due to RSV infec-
tion are very rare in otherwise healthy children. 
Mortality rates are greatest in the first few months 
of life and decrease as childhood progresses.8 
However, findings from the Pneumonia Etiology 
Research for Child Health PERCH) study implicate 
RSV in development of pneumonia in the under-5s. 
In this study of children with pneumonia, RSV 
was found in 31.1% of all cases, and three times 
more common than the next most predominant 
pathogen.9 In a Spanish study, mortality was esti-
mated to be 6.19 per 100 000 in children under 
1 year of age, decreasing by 50% each year until a 
plateau around 4 years of age (0.79 in 1–2 years of 
age; 0.32 in 2–3 years; 0.19 in 3–4 years and 0.19 
in children over 4 years).8

Most of the global RSV-associated child mortality 
occurs in low-income countries with 99% of deaths 
occurring in these countries, most in children under 
6 months of age.10 Globally, there are an estimated 
33.1 million cases of RSV-associated acute lower 
respiratory tract infection (LRTI) per year, with 3.2 
million hospital admissions and 59 600 hospital 
inpatient deaths.10 When including RSV infections 
outside the hospital setting, mortality estimates 
almost double to 118 200.10 Furthermore, at least 
28% of RSV-associated mortality occurred in chil-
dren with severe comorbidities (such as congenital 
heart disease) in low-income countries.11 Despite 
this, health inequality means that only 24% of 
children in low-income and lower middle-income 
countries have access to paediatric intensive care, an 
important reason for the differences in mortality.11

In adults, there are 8482 deaths per year attribut-
able to RSV in the UK, with 93% of those occurring 
in adults aged more than 65 years.12 Deaths due to 
RSV respiratory disease increase after age 49, rising 
from 4.2% of all respiratory disease deaths in adults 
aged 18–49 years to 5.9% in adults aged 50–64 

986  Coultas JA, et al. Thorax 2019;74:986–993. doi:10.1136/thoraxjnl-2018-212212

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies. 
.

E
rasm

u
sh

o
g

esch
o

o
l

at D
ep

artm
en

t G
E

Z
-L

T
A

 
o

n
 M

ay 22, 2025
 

h
ttp

://th
o

rax.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
5 A

u
g

u
st 2019. 

10.1136/th
o

raxjn
l-2018-212212 o

n
 

T
h

o
rax: first p

u
b

lish
ed

 as 

http://orcid.org/0000-0003-3381-8936
http://orcid.org/0000-0003-1406-6142
http://crossmark.crossref.org/dialog/?doi=10.1136/thoraxjnl-2018-212212&domain=pdf&date_stamp=2019-09-28
https://www.brit-thoracic.org.uk
http://thorax.bmj.com
http://thorax.bmj.com/


State of the art review

Figure 1 Estimated respiratory syncytial virus (RSV)-attributable 
mortality in the Netherlands according to age. Excess specific mortality 
in children aged 0–4 years (red) compared with adults aged 75 years 
and over (yellow) over 11 successive winters (1999/2000 to 2010/2011). 
Figure based on data from Wijngaard et al,14 with permission.

years, 5.7% in elders aged 64–74 years and again reaching 5.9% 
in elders aged more than 75 years.12 Mortality in these groups 
also rises from 1 per 100 000 in adults aged 18–49 years to 
155 per 100 000 in elders aged over 75 years.12 It is important 
to note that RSV infection may be greatly underdiagnosed in 
adults due to delayed and insidious disease and the relatively low 
viral load (especially if only upper respiratory tract samples are 
tested).13 Epidemiological studies show a much larger number of 
inferred RSV-associated deaths than those that might be estab-
lished by direct testing and viral detection.11 In a study from the 
Netherlands using statistical methodology to estimate seasonal 
mortality of the total Dutch population of 16.5 million, RSV-at-
tributable mortality could be inferred in different age groups.14 
Projected RSV-attributable deaths in the paediatric age group 
were very rare indeed compared with RSV-attributable deaths 
in older adults (figure 1); based on data from Wijngaard et al14 
with permission.

risk factors
Age remains the biggest risk factor for bronchiolitis, young 
children having small-diameter airways, impaired respiratory 
capacity and low respiratory reserve.15 Risk is greatest at 1 
month of age and decreases thereafter.16 Exposure to tobacco 
smoke and lack of breastfeeding have important additional 
effects though conclusions are limited by small sample size in 
these studies.17 Risk factors such as male sex, prematurity, 
congenital heart disease and underlying pulmonary disease are 
also significant.18 19 Another strong risk factor is the presence of 
older siblings.20 Older siblings are a greater source of spreading 
infection than adults as they spend significant time in nurseries 
and schools where RSV can spread with ease.

In elderly persons, the greatest risk factors are pulmonary 
disease (especially COPD) and functional disability as measured 
by activities of daily living.21 Interestingly, coronary artery 
disease and diabetes (both risk factors for severe influenza) are 
not associated with increased risk of RSV severe disease.21 RSV is 
associated with significant morbidity and mortality in care home 
residents, with 12% of all adult RSV admissions occurring in this 

group and with a mortality rate of 38% compared with 3% in 
patients admitted from the community.22

ClInICAl dIAgnoSIS
Children
Viral bronchiolitis is one of the most common infant viral 
illnesses; RSV infection causing about 70% of cases. Bron-
chiolitis typically develops after an initial prodrome of nasal 
congestion, cough and coryza that can last for up to 3 days.23 24 
Subsequently, low-grade fever, wheezing, crepitations on auscul-
tation and signs of increased respiratory effort develop, such 
as nasal flaring, chest wall retraction and tachypnoea.23 In very 
young infants under 6 weeks of age, apnoea associated with RSV 
infection is an important indication for hospital admission.25 
In most children, however, reduced oral intake and hydration 
status are the main indications for admission. Other reasons for 
hospital admission include hypoxia and respiratory failure. RSV 
infection is also associated with otitis media.26

In hospitalised infants, RSV infection is associated with 
pulmonary infiltrates/atelectasis (42.8%), otitis media (25.3%), 
hyperinflation (20.8%), respiratory failure (14%), hyperkalemia 
(10.1%, defined as K+ >6.0), apnoea (8.8%) and bacterial 
pneumonia (7.6%). Rarer complications included anaemia (6%), 
sepsis (5.9%), seizures (1.8%) and meningitis (0.2%, coinfection 
with Streptococcus pneumoniae).27

Adults
In young adults, RSV typically manifests as upper respiratory 
tract infections with mild to moderate symptoms, only very 
rarely causing severe disease.13 However, severe complications 
may follow in frail elderly people with respiratory or cardiac 
comorbidity.13 Fever occurs in approximately 50% of cases but 
rarely reaches >38°C; cough occurs in over 90% and wheeze 
in around 40%. Wheeze in the absence of a history of asthma 
or other lung disease raises the suspicion of RSV infection.13 
Compared with infants, adults are much less likely to test posi-
tive for RSV, present later, have lower viral titres and have lower 
yields on routine diagnostic testing.28 This leads to great diffi-
culty in ascertainment of RSV as the original cause of deterio-
rating health in frail elderly persons, similar to the elusive cat 
called Macavity described by TS Eliot in Old Possum’s book of 
practical cats (box 1).

In the elderly, RSV can also lead to viral-associated pathology 
with a different profile of complications to infants. One study in 
New York state found RSV associated with over 10% of LRTIs, 
11.4% of COPD exacerbations, 7.2% of asthma exacerbations 
and 5.4% of congestive heart failure exacerbations.22

Viral diagnosis
RSV isolation from tissue culture was originally the gold stan-
dard for RSV diagnosis, but may take several days to report ; 
the cost and reliability of processing the sample have led to this 
method being largely superseded.29 Antigen detection assays 
such as direct immunofluorescence assays, enzyme immunosor-
bent assays, optical and chromatographic immunoassays have 
become popular,29 but despite their convenience they are inap-
propriate for diagnostic use in older children and adults with a 
history of previous infection. In such cases, the antigen load is 
much lower; sensitivity ranges from 72% to 94% and specificity 
95%–100%, in children up to 32 months of age, but sensitivity 
is 0%–25% in older children and adults.30 Nucleic acid assays, 
such as real-time PCR, have superior sensitivity and specificity 
compared with antigen detection assays and tissue culture, but 
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box 1 Adults are less likely to test positive for 
rSV, drawing similarities with the elusive cat called 
macavity from TS Eliot's old possum's book of practical 
cats.

 ► He’s outwardly respectable (they say he cheats at cards).
 ► And his footprints are not found in any file of Scotland Yard’s.
 ► And when the larder’s looted, or the jewel-case is rifled.
 ► Or when the milk is missing, or another Peke’s been stifled.
 ► Or the greenhouse glass is broken, and the trellis past repair.
 ► Ay, there’s the wonder of the thing! Macavity's not there!

From TS Eliot, Old Possum’s Book of Practical cats, Faber and Faber, 
1939.

Figure 2 Structure of RSV. (A) The infectious form of the virus 
is filamentous, the structure bearing attachment G and F proteins 
embedded in the viral membrane. The M protein lies underneath the 
viral membrane. The L and the P are associated with viral RNA. (B) 
The viral genome contains 10 genes encoding 11 proteins (M2 gene 
encoding the M2-1 and M2-2). The most abundantly transcribed genes 
are those at the 3′ end, encoding NS protein 1 (NS1) and NS2, which 
inhibit apoptosis and antiviral responses. Source file: F, fusion protein; 
G, glycoprotein; L, large nucleoprotein; M, matrix protein; NS, non-
structural protein; P, phosphoprotein; RSV, respiratory syncytial virus; 
ssRNA, single-stranded RNA (reproduced with permission).33

adults are still less likely to have a positive result.31 While sensi-
tivity is greatly reduced in older patients, they remain the most 
sensitive detection method available.30

VIrology oF rSV
Virus structure
RSV is a single-stranded negative sense virus, genome being 
held within a nucleocapsid surrounded by a lipoprotein enve-
lope.32 The viral RNA encodes 10 genes encoding 11 proteins.32 
The major surface glycoprotein (G) facilitates virus attachment 
and the fusion (F) protein mediates virus–cell fusion and cell–
cell fusion into syncytia.32 The third envelope protein is small 
hydrophobic (SH) protein. Other RSV proteins include matrix 
(M) proteins M2-1 and M2-2 which regulate transcription, 
nucleoprotein (N), phosphoprotein (P) and large nucleoprotein 
(L)—RNA polymerase, which are located in the nucleocapsid. 
The non-structural (NS) proteins, NS1 and NS2, have immuno-
modulatory functions.32 The structure of the virus and genome 
order is shown diagrammatically in figure 2, from Battles and 
McLellan.33

Recent knowledge of the structure and conformational 
changes of the envelope glycoprotein F has had a major impact 
on vaccine development. RSV-F exists in several forms, the 
prefusion form (preF) undergoes a conformational change after 
binding its target, allowing insertion of the F protein into the 
host cell. It again changes into a more stable and elongated form 
(postF) where the virus and host membranes are fused.34 In man, 
the most neutralising antibody is directed against the Ø and V 
antigenic sites on RSV PreF, as measured by Luminex-based 
assays34 and antibodies directed against RSV-F prevent epithe-
lial cell binding.35 36 PreF vaccines aim to conserve these highly 
immunogenic sites.34

Karron et al, using RSV mutants, showed that changes in 
F protein alone affect virus penetration, protein assembly and 
subsequent virus release.37 Like RSV-G, the F protein has the 
capacity to bind to glycosaminoglycans (such as immobilised 
heparin), but its capacity is far less than that of G protein, 
and its exact ligand remains unclear.38 39 Intercellular adhe-
sion molecule 1 (ICAM-1) has been proposed as a ligand as 
monoclonal antibodies directed against ICAM-1 significantly 
reduced RSV infection.40 Nucleolin has been identified as a 
potential ligand.41

Hallek et al demonstrated the ability of RSV-G to bind proteo-
glycans (GAGs) present on cell surfaces and thus facilitate virus 
attachment.42 Its role as a low-affinity receptor was confirmed 
when RSV-cell binding was shown to occur in its absence.43 
While various GAGs have been identified, the protein ligand for 
RSV-G has not been identified either. The most promising candi-
date is CX3CR1, which is expressed on human airway epithelial 
cells (AECs).44 45

In addition, RSV-G also modulates the host immune response 
in various ways; the presence of RSV-G leads to a reduction in 
CX3CR1+ T cell migration to the lung and in Class I restricted 
interferon (IFN)-ϒ+ T cells specific for RSV.46 47 More dramat-
ically though, RSV-G reduces the number of DX5+ natural 
killer (NK) cells (an early response cell in viral infections), 
neutrophils and CD11b-expressing cells (a regulator of leuco-
cyte adhesion).48 G protein attenuates type I IFN responses via 
toll-like receptors on epithelial cells and plasmacytoid dendritic 
cells (pDCs) and also reduces IFN-ϒ production from T cells via 
the same mechanism.49 RSV-G has been targeted as a vaccine 
antigen, particularly as primary RSV infection generates strong 
anti-G antibody responses; preclinical trials have shown prom-
ising neutralising antibody responses.36 Phase II trials are also 
underway using MVA-BN-RSV, a vector model incorporating 
various proteins including RSV-G.

The SH protein forms viroporins once inside the target 
cell which permeabilise host cell membranes to facilitate viral 
spread.50 SH protein also has various immunomodulatory 
features. SH blocks tumour necrosis factor-α signalling via 
nuclear factor kappa light chain enhancer of activated B cells 
(NF-κB) and thus inhibits apoptosis of virus infected cells.51 In 
addition to promoting apoptosis, NF-κB is a master regulator 
of many proinflammatory cytokines in antigen-presenting cells 
as well as promoting antigen presentation through upregulation 
of transporter associated with antigen processing (TAP1), major 
histocompatibility complex class I (MHC-I), CD40 and CD86.52 
Pollock et al showed that the SH protein attenuates production 
of NF-κB dependent cytokines and that SH protein also leads 
to reduced numbers of CD3+ IFN-ϒ+ cells.53 SH is harder to 
detect on the virion compared with F and G proteins but was 
recently incorporated into a vaccine targeting infected cells 
rather than virions, via Fcϒ receptors.54 This vaccine candidate, 
DPX-RSV, is currently undergoing phase I trials.
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box 2 rSV interference with the host immune 
response

non-structural (nS) proteins
 ► NS1 disrupts interferon regulatory factor 3 binding to the 
interferon-β promoter.

 ► NS2 protein binds retinoic acid-inducible gene I, blocking 
innate signalling.

 ► NS1/2 enhance degradation of STAT2, terminating innate 
response.

 ► NS1/2 inhibits conventional dendritic cell (DC) maturation, 
inhibiting antigen-presenting cell functions.

Surface glycoproteins
 ► Glycoprotein binds to CX3CR1 on plasmacytoid DC/cilliated 
cells.

 ► Secreted glycoprotein acts as a decoy for antibody.
 ► Fusion protein binds to toll-like receptor 4, possibly causing 
innate desensitisation.

Internal proteins
 ► Nucleoprotein disrupts the synapse between CD4 and CD8 
cells.

Figure 3 Confocal image of respiratory syncytial virus (RSV)-infected 
human nasal ciliated epithelial cells in vitro. At 72 hours postinfection, 
viral antigens (stained green, fluorescein isothiocyanate) are seen 
on the surface of the cell and the full length of some the cilial shafts. 
Antibodies against acetylated tubulin were used to detect the axonemal 
microtubules (AlexaFluor 594; red); nuclei are blue. Three-dimensional 
reconstruction of all channels was performed with Imaris (Bitplane AG, 
Zurich, Switzerland) blend filter. Scale bar 15 um. Image kindly provided 
by Dr Claire Smith, UCL GOS Institute of Child Health, University College 
London, UK.

NS1 and NS2, the non-structural proteins of RSV, play a key 
role in virus immune evasion, primarily through inhibition of 
type 1 IFNs and attenuated signalling in RSV-infected cells. 
NS1 directly binds interferon regulatory factor 3 and prevents it 
binding to the IFN-β promoter region, while both NS1 and NS2 
both increase STAT2 proteasome-mediated degradation leading 
to weakened IFN responses.55 56 Such attenuated immune 
responses have significant consequences for RSV disease (box 2).

HoST rESponSE
pathogenesis
Wheezing, hypoxaemia and increased respiratory effort are a 
consequence of the intense inflammatory infiltrate recruited to 
the respiratory tract in response to RSV infection. The inflam-
matory cell infiltrate is associated with copious mucus produc-
tion, oedema and shedding of AECs, all of which contribute 
to critical narrowing of the small airways. Previously, hypoth-
eses about disease severity have related it to an inappropriately 
intense immune response; however, new evidence challenges 
this classical view. A recent study by Thwaites et al showed that 
severe RSV bronchiolitis in infants was associated with a para-
doxically reduced viral load, IFN-γ, CCL5 and type I IFN gene 
expression but increased levels of interleukin (IL)-17a and mucin 
gene expression.57

Innate immune response
RSV primary infects ciliated AECs (figure 3).58 The epithelium is 
protected by a thick mucus layer containing mucin and sialic acid 
compounds; bronchial epithelial cells (and A549 human alveolar 
basal epithelial adenocarcinoma cells) specifically express the 
mucin MUC5AC.59 Also important are cathelicidin and other 
host defence peptides which impede RSV invasion by directly 
acting on the virus envelope. The airway epithelium produces 
chemokines including the CXC chemokines inducible protein 
(IP)-10 and IL-8 which recruit neutrophils to the airway lumen, 
in large numbers, shortly after infection.60 AECs are also an 
important early source of type 1 IFNs, which upregulate MHC-I 
and drive type 1 T helper cell (Th1) responses. RSV-NS1 and 

NS2 interact with AECs after cell invasion to block such IFN 
responses and mitigate virus clearance.61

Other aspects of innate immune responses include alveolar 
macrophages, DCs and innate lymphoid cells (ILCs), which 
release IFN-ϒ, IL-1β and IL-18, further promoting generalised 
inflammation.62 These proinflammatory cytokines lead to 
recruitment of conventional DCs, and later CD8+ T cells and 
Th1 CD4+ T cells as well as immunoglobulin (Ig)G and IgA 
producing and primed B cells.

The pDCs are another source of INF-α/β (type 1 IFNs) which 
elicit antiviral responses.63 Whereas adult pDCs have been shown 
to recognise intracellular virus RNA via Rig-I-like receptors and 
subsequently produce type 1 IFNs, this function in infant pDCs, 
and even up to 5 years of age, is greatly reduced.64

Neutrophils, recruited by the AEC-derived CXC chemokines, 
IP-10 and IL-8, and CCL2 and CCL4 are the most prevalent 
inflammatory cell in the airways of RSV-infected infants, but 
their role in host defence is not clear.60 Group 1 ILCs contain 
the cytotoxic NK cell which is an important source of IFN-ϒ 
and drives the initial antiviral responses in RSV infection. NK 
cells may even play a role in controlling immunopathology, as 
two studies have found that the number of NK cells in the lung 
and blood were inversely proportional to the severity of RSV 
infection.65 66

Polymorphisms of the innate immune system are associated 
with increased susceptibility to RSV infection, but mutations in 
IL-4-Rα and IL-8 are also implicated.67–69 Polymorphisms in MX1 
(encoding the MX1 protein which blocks primary transcription 
of viral RNA) are associated with severe RSV infection,70 as is 
Marco (an innate immune system scavenger receptor); Marco−/− 
mice show enhanced neutrophil and monocyte recruitment 
during RSV infection.71 While many genes have minor effects on 
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Figure 4 Respiratory syncytial virus (RSV) vaccine candidates and 
monoclonal antibodies in development.

Table 1 Current vaccine pipeline as of December 2018

rSV vaccine snapshot december 2018

preclinical phase I phase II phase III
market 
approved

Live attenuated 4 6 0 0 0

Inactivated 1 0 0 0 0

Particle 8 1 1 1 0

Subunit 4 5 1 0 0

RNA/DNA 2 0 0 0 0

Live vector 1 1 3 0 0

Combo/Ab prophylax. 4 1 3 0 1

Total, n=48 24 14 8 1 1

There are 48 vaccine candidates in development involving several different types 
of vaccine structure as detailed in the left-hand column. As of 2018, only the 
prophylactic use of palivizumab is market approved. Adapted from108.

RSV disease, there is currently no evidence of a strong genetic 
component.

Adaptive immune response
High antibody titres of both IgA and IgG are associated with 
partial protection in adults and may prevent RSV-associated 
LRTI, but antibody levels wane rapidly after episodes of rein-
fection.72 After RSV exposure, both IgG and IgA responses are 
seen; such B cells are both T cell dependent and independent. 
In infants, follicular DC structures are not well developed, so B 
cell activation relies more on T cell-independent pathways. In 
addition, neonatal B cells have low expression of transmembrane 
activator and calcium modulator and cyclophilin ligand inter-
actor (receptor for B cell activating factor (BAFF) and A PRolif-
eration-Inducing Ligand (APRIL)), CD86, CD80 and CD40, and 
lack the alpha chain of the IL-4 receptor and so respond poorly 
to stimulation.73–75

Extrafollicular B cell activation also leads to IgA+ and IgG+ 
memory B cell formation and this process relies on stimulation 
by protein ligands BAFF and APRIL.76 One study found that 
infant bronchial epithelial cells had high expression of BAFF 
during RSV infection, suggesting a role for airway epithelium 
in supporting lung B cell responses.76 Even with F-specific IgG 
present, adults may still be reinfected with RSV, highlighting a 
prominent role for IgA.77 78 Singleton et al found that nasal asso-
ciated lymphoid tissue IgA+ B cells declined rapidly postinfec-
tion, but these B cells confer protective immunity.79 In human 
challenge trials, individuals resistant to RSV have significantly 
higher levels of nasal RSV-F-specific IgA.80

rSV prEVEnTIon
Intravenous polyclonal immunoglobulin (given as a monthly 
infusion) is partially effective as prophylaxis, but this has now 
been replaced by palivizumab,81 a humanised mouse monoclonal 
antibody that neutralises RSV and is effective prophylactically. It 
is administered as a monthly intramuscular injection during the 
RSV season and binds F protein, preventing infection of both 
RSV A and B.82 It reduces hospitalisation due to RSV, but its 
limited efficacy and cost have restricted its indications to the 
most vulnerable infants.83 A new RSV-F monoclonal antibody 
(MEDI8897) with a longer half-life than palivizumab finished 
phase IIb trials in February 2019.84 Monoclonal antibodies 
against RSV-G (eg, 3A5 and 5H6) reduce viral load in mice 
but have not been used clinically.85 Antibody therapy is not of 
proven value therapeutically in infected persons.

RSV vaccines are not yet available but are expected to be 
of use not only in young children at risk, school-age children 
who act as disease vectors, adult caregivers and the elderly but 
also those with chronic cardiopulmonary conditions. In chil-
dren, the most vulnerable are neonates to 6 months of age, with 
many infants therefore at risk before the routine immunisation 
schedule begins. One strategy would be to vaccinate pregnant 
mothers in the second or third trimester so that transplacental 
transfer of protective antibodies can take place and delay the 
median peak of RSV disease.86

Historically, formalin-inactivated RSV vaccines (FI-RSV) led to 
higher rates of admission during subsequent natural RSV infec-
tions, and at least two vaccinated infants died from vaccine-aug-
mented disease.87 Enhanced pathology may in part be due to 
immune complex deposition in the lungs leading to complement 
activation causing enhanced immunopathology and broncho-
pneumonia.88 FI-RSV induced led to high levels of RSV-F anti-
bodies but because these were not neutralising probably allowed 

virus-specific T cells (including Th2 cells) to cause an exuberant 
cellular immune reaction in the lung.89

In order to induce neutralising antibody, many current 
vaccine programmes (figure 4, adapted from Mazur et al90) are 
now focussed on the use of prefusion RSV-F or live attenuated 
vaccines that can be administered intranasally; these have the 
advantage of inducing mucosal antibody. At the time of writing, 
there are six live attenuated vaccines that are in phase I trials and 
four more in the preclinical stage of development.91 Live repli-
cating agents are likely to be of most use in recipients under 2 
years of age; replication being reduced in older populations with 
prior RSV exposure.

There are currently five subunit vaccines in phase I trials 
and one in phase II trials clinical trial (four targeting preF, one 
targeting G and one targeting SH).91 Other vaccine candidates 
include particle-based and heterologous vector-based vaccines. 
Of the particle-based candidates, an RSV-F nanoparticle vaccine 
is currently in phase I, II and III trials; PREPARE phase III trial in 
pregnant women92; RESOLVE phase II trial in adults,93 showing 
some apparent benefit in patients with COPD and a third 
trial in infants which has just concluded phase I.91 94 A novel 
mucosal particle-based vaccine (SynGEM, Mucosis BV) induces 
RSV-F antibodies but requires additional optimisation (PMID: 
30753101 DOI: 10.1164/rccm.201810-1921OC). Finally, there 
are currently four vector-based vaccines in phase I/II using a 
variety of RSV proteins91 (table 1).
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Maternal vaccination has considerable potential advantages, 
but the RSV-F nanoparticle approach (Novavax) has limited 
apparent efficacy; the GSK RSV-F (GSK) is a subunit vaccine 
and the RSV-F DS-Cav1 (National Institutes of Health/
National Institute of Allergy and Infectious Diseases/Vaccine 
Research Center) is also a subunit vaccine.91 In February 2019, 
Novavax reported that their maternal vaccination approach 
did not meet primary objective of prevention of medically 
significant RSV LRTI in infants but showed partial efficacy 
against secondary objective (RSV LRTI hospitalisation) and 
reduced the frequency of severe disease among offspring.95 
For elderly at-risk patients, a variety of particle based, vector 
based and subunit vaccines are in the pipeline; MVA-BN RSV 
is a notable vector-based candidate and DPX-RSV-protein is a 
subunit vaccine.91

AnTIVIrAl THErApy
There are multiple antiviral therapies in development which 
centre around two main approaches: ‘entry as target’ and 
‘non-entry as target’. Entry as target therapies block virus fusion 
via RSV-F and include palivizumab (a monoclonal antibody 
which binds RSV-F) and fusion inhibitors such as presatovir 
(allosteric inhibitors of RSV-F). Although effective in prevention, 
palivizumab has no therapeutic effect in acute RSV infection.96 
Fusion inhibitors have gained the most attention with presatovir 
the most recent. Presatovir has undergone five phase II trials but 
has limited impact on viral load and had no effect on clinical 
features of RSV disease; clinical trials have been halted due to 
safety concerns.97 Other fusion inhibitors include MDT-637 
(entered phase IIa trials but currently on hold), JNJ-2408068 
(on hold due to safety concerns),98 TMC353121 (showed virus 
reduction during in vivo trials),99 BMS-433771 (reduced virus 
levels in mice studies when given prior to infection, suggesting 
use as a prophylactic agent),100 BTA-C585 (virus mRNA reduc-
tion in mice studies), P13 and C15 (awaiting results). Newer 
strategies include modifying the host rather than targeting 
the virus directly, with focus on RSV-binding molecules such 
as CX3CR1 (fractalkine) and nucleolin, though more work is 
required to assess safety and efficacy.101

‘Non-entry as target therapies’ interfere with the RSV poly-
merase which is responsible for viral RNA replication. The RSV 
polymerase is composed of an N-RNA template which alongside 
L and P proteins forms the polymerase itself, and this complex 
utilises M2-1 as a transcription elongation factor for efficient 
processing of RNA. ‘Non-entry as target therapies’ are separated 
into five different classes targeting different proteins of the poly-
merase: L-protein inhibitors (eg, ribavirin), N-protein targeting 
inhibitors (eg, RSV604), N–P protein–protein interaction targets 
and M2-1 protein targets.

ALS-008176 is an L-protein inhibitor, and clinical trials 
in adults showed both virus level reduction and symptom 
improvement,102 but clinical trials have been halted due to 
safety concerns. BI-D (another L-protein inhibitor) has shown 
virus reduction in mice studies but is yet to start human trials.103 
RSV604 is an N-protein inhibitor but showed no reduction in 
viral load during human trials.104 Ribavirin (L-protein inhib-
itor) is currently the only approved antiviral agent, but its effi-
cacy is largely disputed and has no clear impact on mortality105 
and essentially is no longer used in the UK. Future antiviral 
agents could be used prophylactically in high-risk infants or 
adults as shown by the promising data on BMS-433771 fusion 
inhibitor.

mArkErS oF SEVErITy
Studies are underway to identify new markers of severity, for 
example, by measuring gene expression profiles of CD4+ T 
cells. One study found that genes associated with neutrophil 
activation and inflammation were expressed more strongly in 
severe RSV disease; there seems to be a correlation between 
prolactin signalling and severity of infection, possibly 
explained by prolactin inhibiting Th1 responses which may 
contribute to pathology.17 Transcriptomic work also reveals an 
overexpression of SOCS genes which regulate T cell differen-
tiation. SOCS2 and SOCS3 lead to Th2 and Th17 differen-
tiation, and both, alongside SOCS5 are raised in severe RSV 
infection.17 106 107 Such new markers of disease severity may 
offer greater insight into which patients are likely to expe-
rience more severe disease and thus be candidates for more 
intensive management.

ConCluSIon
Despite decades of intensive research, much remains to be 
discovered regarding the host response to RSV infection. The 
virus’s apparent immunomodulatory adaptations have so far 
evaded the efforts of vaccinologists and the attempts of clinical 
scientists to specifically ameliorate its clinical manifestations. 
However, RSV is now square in the crosswires of many research 
teams and highly capable groups as one of the major remaining 
tractable challenges in infectious diseases, and there is renewed 
optimism that a new generation of vaccines and antivirals is on 
the near horizon. Clinical studies will reveal what part they have 
to play in prevention and treatment of disease, both in children 
and in vulnerable adults.
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